DEPARTMENT OF MATHEMATICS

COURSE OUTCOMES

Course	Outcomes
B.Sc. – I Semester	Enables the students to students to learn about
<u>Algebra – 1.1</u>	mathematical logic in the study of theoretical computer
Mathematical logic, Theory of equations,	science, polynomials, and algebraic equations,
Matrices	applications of matrices and determinants to solve
<u>Calculus – 1.2</u>	equations.
	Enables the students to learn about successive
	differentiation in the field of engineering, partial
	derivatives, total derivative in the field of geometry,
	applied mathematics
B.Sc II Semester	Enables the students to learn about the properties
<u>Algebra – 2.1</u>	implied by the definitions of groups and rings, use the
Abstract Algebra, Sequences and series of	definitions of convergence as they apply to sequences,
real numbers	series and functions.
Advanced Calculus – 2.2	Enables the students to compute limits, derivatives of
Differentiability, Integral calculus, line and	algebraic, trigonometric, inverse trigonometric,
multiple integrals and gamma and beta	exponential and logarithmic functions.
functions	
B.ScIII Semester	
<u>Algebra – 3.1</u>	
Linear algebra, Rings, Integral domains and	Enables the students to solve systems of linear equations,
fields	recognize the concepts of the terms span, linear
	independence, basis, and dimension and apply these
	concepts to various vector spaces and subspaces.
Differential Equations - 3.2	It enables the students to solve differential equations of
Differential equation and Total Differential	first order using graphical, numerical and analytical
Equation	methods and solve and apply linear differential equations
	of second order.
B.ScIV Semester	Enables the students to apply the mean value theorems
<u>Real and Complex Analysis – 4.1</u>	and the fundamental theorem of calculus to problems in
Complex Analysis and Real Analysis	the context of real analysis. To represent complex
	numbers algebraically and geometrically and to apply the

	concept of C-R equations.
Special functions and PDE – I – 4.2	It enables the students to recognize the major
Special Functions and Partial Differential	classifications of PDEs and to be competent in solving
Equations - I	linear PDEs using classical solution methods.

Enables the students to recognize the different methods
of finding Laplace transforms and Fourier transforms of
different functions. They apply the knowledge of L.T, F.T
in finding the solutions of differential equations, initial
value problems and boundary value problems.
It enables the students to learn about scalar and cross
product of vectors in 2 and 3 dimensions represented as
differential forms or tensors, the vector-valued functions
of a real variable and their curves and intrinsic geometry.
Enables the students to model and solve real-world
problems using graphs and trees, both quantitatively and
qualitatively.
Enables the students to define and illustrate the concept
of topological spaces and continuous functions and to
define connectedness and compactness and to illustrate
the concepts of separation axioms.
It enables the students to derive numerical methods of
approximating the solution of problems of continuous
mathematics.
Enables the students to model and solve real-world
problems using graphs and trees, both quantitatively and
qualitatively.
There is a project for B.Sc. VI th semester for 100 marks
(70 for External and 30 for internal) of any one of the
optional subjects of their choice.